Activités							Suppor Dro	rt : AR one				
Manipulatio	ns	Т	D	I	Evaluat	ion	Durée : 2h					
Compétences à acquérir												
A- Ar	alys	er		B- Mo	déliser		C- Expé	rimenter	D- Communiquer			
A1 A	2	A3	B1	B2	B3	B4	C1	C2	D1	D2		
Matériel à a • AR-] • IPAI	ispo. Dron)	sition : e				Documents d Doss AR.I Docu Docu	<i>à disposition</i> ier technique Drone Develo iment ressour iments annexe	: de l'AR-Dror per Guide SD ce sur les rése es	ne K 1.6 aux			

<u>Problématique</u> : Comment l'AR-Drone fait-il pour communiquer en toute sécurité avec l'IPAD ?

Préalable :

• Chercher les définitions des termes suivants : OSI, ARP, MAC, ICMP, UDP, DHCP, TCP, IP

Activité 1 : Mise en place de la communication

La communication doit s'établir entre une Station-sol (IPAD) et l'AR-Drone.

Identification des paramètres de l'IPAD :

 Prendre en main l'IPAD et retrouver (dans le menu réglages) les paramètres réseau (WIFI) de l'IPAD

Connexion à l'AR-Drone :

- **Allumer** l'AR-Drone et **connecter** la station-sol (IPAD).
- **Relever** toutes les informations concernant le WIFI et les **expliquer** au mieux.
- **Expliquer** pourquoi les 2 éléments peuvent communiquer.
- A quelle couche du modèle OSI appartiennent les adresses IP ?

Nous allons maintenant utiliser l'application « SE CONNECTER » disponible sur l'IPAD

- Lancer l'application « Se connecter ».
- Compléter le champ adresse IP AR-Drone, lancer le test de connectivité (ping) et conclure (voir protocole ICMP).
- **Changer** l'adresse IP, **tester** et **conclure**.

Interprétation de la table ARP Station-Sol :

- Relancer le ping sur le pilote et noter le contenu de la table ARP. Qu'est-ce que cela représente ? Qu'est-ce que la table ARP ?
- Qu'est-ce que l'adresse MAC ? A quelle couche du modèle OSI appartient-elle ?

Activité 2 : Analyse des communications sur le réseau Station Sol / AR-Drone, étude de la couche « Application » du modèle OSI

L'AR-Drone doit envoyer des informations à la Station-Sol (roulis, tangage, lacet, altitude, état moteur, état batterie, ..). Certaines sont critiques et d'autres moins importantes. Le protocole de transport utilisé est soit l'UDP, soit le TCP.

• Les principaux canaux de communication entre la Station-Sol et l'AR.Drone, leurs caractéristiques et leur rôle sont dans le tableau ci-dessous. Analyser ce tableau et conclure.

Canal	Protocole de transport (TCP ou UDP)	Port	Rôle
Navdata	UDP	5554	Obtenir les informations de navigation de l'AR-Drone
Vidéo	?	5555	Vidéo caméras
Commandes AT	UDP	5556	Contrôler et configurer l'AR-Drone
Contrôle	ТСР	5559	Transfert de données critique

Nous allons maintenant utiliser l'application « **ANALYSER** » disponible sur l'IPAD. Cela va nous permettre de voir, entre autres, le contenu de NAVDATA (les données de navigation).

Lancer l'application « ANALYSER », compléter le port NavData et l'adresse IP de l'AR-Drone.

On souhaite avoir des informations sur la taille et la fréquence de rafraichissement des données de navigation (Navigation Data ou Navdata) ainsi que le débit lié à cet échange sur le réseau dans le but d'estimer le taux d'occupation des données de navigation sur la bande passante Wi-Fi disponible.

• **Démarrer** une capture, **compléter** le tableau suivant puis **conclure**.

Débit Navdata maximum observe (en Ko/s)	
Débit AT Commands maximum observé (en octets/s)	
Taille approximative d'un paquet de NavData (en octets)	
(calcul à faire après une capture sur 10s environ)	
Taille approximative d'un paquet d'AT Command (en octets)	
(calcul à faire après une capture sur 10s environ)	

On s'intéresse à présent au contenu des Navdata afin de comprendre comment l'AR-Drone informe la Station-Sol sur son état.

- Démarrer une capture sur environ 10 secondes puis lancer l'utilitaire de décodage. L'écran obtenu ressemble à celui de l'annexe n°1.
- Sélectionner à gauche une Capture UDP NAV et le niveau d'encapsulation Data.

Header 0x55667788	Drone	Sequence	Vision	(Option 1		 Checksum block		
	State	number	nag	id	size	data	 cks id	size	cks data
32 bit int.	32 bit int.	32 bit int.	32 bit int.	16 bit int	16 bit int		 16 bit int	16 bit int	32 bit int

Le guide du document « ARDrone_SDK_1_6_Developer_Guide.pdf » nous précise cette partie Data :

Dans un premier temps, on s'intéresse à la partie « Drone State »

Header	Drone	Sequence	Vision	(Option 1		 Checksum block		
0X0066//88	State	number	nag	id	size	data	 cks id	size	cks data
32 bit int.	32 bit int.	32 bit int.	32 bit int.	16 bit int	16 bit int		 16 bit int	16 bit int	32 bit int

La description de ces 32 bits est donnée en annexes n°2 et n°3 (voir exemple tableau ci-dessous)

Nav Data	N° bit	Nom
Prêt à voler (exemple)	b31	EMERGENCY_MASK
Alarme Moteurs	b12	MOTORS_MASK
Alarme Angle	b19	ANGLES_OUT_OF_RANGE
Alarme Batterie	b15	VBAT_LOW
Alarme Hélices	b22	CUTOUT_MASK
		(Cutout system detection)

- **Retrouver** dans la trame le code Hexa de l'état du Drone.
- En activant « State » vous avez accès à l'état du Drone. **Compléter** en conséquence le tableau suivant :

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16

Le code hexa trouvé **est-il identique** à celui indiqué dans la trame ? Si non, **appeler le professeur**.

• **Retourner** le Drone, **faire** une capture et **vérifier** que l'information sur l'angle (out of range) a bien changé.

On s'intéresse à présent aux autres données de navigation telles que l'altitude, les angles, etc... qui sont stockées dans la zone \ll Option 1 \gg .

Header 0x55667788	Drone	Sequence	Vision		Option 1		 Checksum block		
	State	number	nag	id	size	data	 cks id	size	cks data
32 bit int.	32 bit int.	32 bit int.	32 bit int.	16 bit int	16 bit int		 16 bit int	16 bit int	32 bit int

Le décodage de cette zone, toujours selon la documentation du code source du SDK, se fait de la façon suivante (voir annexe $n^{\circ}4$).

- Manipuler l'AR-Drone à la main afin de le positionner à environ 1m sur sol et lancer une capture.
 Retrouver avec l'utilitaire décodage, l'emplacement de l'altitude dans l'une des trames capturées.
- Manipuler l'AR-Drone à la main afin de lui donner un angle de tangage d'environ 30° et lancer une capture. Retrouver avec l'utilitaire de décodage, l'emplacement du tangage dans une des trames capturées.

Activité 3 : Validation de la trame complète (encapsulation)

A partir du document ressource, de l'IPAD, de l'application « ANALYSER » :

- Identifier et analyser le contenu de « Header » du « segment UDP »
- Identifier et analyser le contenu de « Header » du « Paquet IP »
- Identifier et analyser le contenu de « Header » de « Trame Ethernet »